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Modeling the effect of an external electric field on the velocity of spike propagation
in a nerve fiber

John M. Myers
Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138

~Received 21 April 1999!

The effect of an externally generated electric field on the propagation of action potentials is modeled,
assuming the Hodgkin-Huxley equation for the voltage-dependent conductance of the membrane of a nerve
fiber. With some simplifying assumptions, this conductance together with Maxwell’s equations leads to the
Hodgkin-Huxley differential equations for propagation, modified by a term proportional to the gradient of the
externally generated electric field component along the nerve fiber. Computer solution of these equations
shows the influence of an electric field gradient on propagation velocity. When the electric field oscillates,
voltage spikes starting later along a given axon advance or lag relative to earlier spikes, so the time between
spikes at the receiving end differs from the time between spike originations. The amount that a low-frequency
electric field modulates pulse timing at the end of a fiber relative to that at the beginning is estimated under
several conditions.@S1063-651X~99!04811-4#

PACS number~s!: 87.50.2a, 87.10.1e
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I. INTRODUCTION

The interaction of electricity with the human body h
been of interest for over a century; in recent decades, q
tions have been posed concerning possible health effec
extremely low-frequency~ELF! electric fields produced by
power lines. This report generalizes a recent analysis of
current density induced in nerve fibers by ELF fields@1#, to
account for nonlinear membrane conductivity. It will b
shown that because of the nonlinear relation between vol
and current density across the membrane, an externally
erated electric field can slightly speed or retard the propa
tion of action potentials.

The propagation of an action potential requires a non
ear relation between voltage and current density acros
membrane, as was quantified by Hodgkin and Huxley
their investigations of spike propagation along the giant a
of the squid@2#. It is important to distinguish in their mode
between~1! the equations relating current density across
membrane to voltage drop and~2! the equations derived
from these~by use of circuit theory! for the propagation of
voltage spikes along the axon. Later Scott derived th
propagation equations from the equations for current den
across the membrane, Maxwell’s equations for the elec
magnetic field, and a few approximations, without assum
circuit theory@3#.

Another example of an effect in animals which depen
on the nonlinear membrane conductance is the naturally
curring conversion of a receptor potential into a train of vo
age spikes in a nerve fiber@4,5#. In this example, the mea
time interval between spikes codes the intensity of sensa
Coding information into intervals between voltage spikes
nerve fibers is ubiquitous across the animal kingdom.

This report concerns a nonlinear response of a nerve fi
to an ELF electric field. The gradient of the ELF field com
ponent along a nerve fiber will be shown to influence
velocity of propagation. If the ELF field oscillates, then
does the propagation velocity, with the result that spike-
PRE 601063-651X/99/60~5!/5918~8!/$15.00
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spike time intervals can be different at the receiving end o
nerve fiber from the intervals at the transmitting end. In oth
words, an ELF field modifies the information coded in
pulse intervals.

Hodgkin and Huxley obtained data by which to determi
parameters for their model and against which to test
model by imposing an externally generated voltage as a s
function of time across the cell membrane and assuming
the current density transverse to the membrane would be
same as it would for the same voltage function natura
generated. Thus their model in its construction and spe
cally in its relation to measured data assumes that a m
brane voltage as a function of time results in a certain curr
density as a function of time, regardless of the source of
voltage. The model proposed here uses the Hodgkin-Hux
equations for current density across the cell membrane
relation to membrane voltage, and follows Hodgkin a
Huxley in assuming applicability of these equations ev
when an external source influences the membrane voltag
Sec. II, Scott’s derivation of the propagation equations fr
Maxwell’s equations is generalized to allow for an externa
generated ELF field. This results in the Hodgkin-Huxley d
ferential equations for spike propagation, modified by a te
for the externally generated ELF field. Computer solution
the differential equations then produces a relation betw
the gradient of the ELF field component along an axon a
the propagation velocity, as described in Sec. III. Section
extrapolates these results to estimate the effect of an exte
field gradient that oscillates in time.

II. FORMULATION OF PROPAGATION EQUATIONS

Scott discussed the relation between Maxwell’s equati
for the electromagnetic field and the Hodgkin-Huxley equ
tions for propagation of a voltage spike along a nerve for
case of zero incident field@3#. The formulation here account
for an incident field and attends in more detail to certa
approximations needed to arrive at the desired propaga
equations.
5918 © 1999 The American Physical Society
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In cylindrical coordinates (r,f,z), the nerve fiber is a
cylinder defined byr<a. An electromagnetic field is define
both inside and outside a boundary defined byr5a; the
membrane of the nerve fiber is modeled as a limiting cas
zero thickness. Thus the membrane partitions space int
inner regionr,a and an outer regionr.a. The voltage-
dependent conductance of the membrane is expressed
nonlinear boundary condition joining the two regions atr
5a.

Maxwell’s equations relate the electric fieldE, the electric
displacementD, the magnetic fieldH, the magnetic induc-
tion B, the charge density, written here ash, and the current
densityJ. Using SI units, letm0 be the magnetic permeabi
ity of free space. Letting the indexj take the values ‘‘in’’ and
‘‘out,’’ let e j and s j be the dielectric permittivity and the
electrical conductivity, respectively, in regionj. Azimuthal
symmetry is assumed (]/]f50), as is a transverse magnet
field: H5efHf ~so Hr5Hz50). From this it follows that
the electric field has onlyr andz components, and these a
determined byHf @3#:

S e j

]

]t
1s j DEr5e j

]

]t
Er1Jr52

]

]z
Hf , ~1!

S e j

]

]t
1s j DEz5e j

]

]t
Ez1Jz5

1

r

]

]r
rHf . ~2!

Maxwell’s equations provide a scalar wave equation for
governing componentsHf :

F ]2

]z2
1

]

]r

1

r

]

]r
r2m0S e j

]

]t
1s j D ]

]tGHf50. ~3!

The main focus of analysis is on the potential differen
F(z,t) across the membrane. This potential will be related
Hf in two ways: the first way uses Eq.~1! and the continuity
of Hf at r5a together with the Hodgkin-Huxley equation
relating membrane voltage to membrane current density;
second uses Eq.~2! along with a boundary condition asr
→`, which depends on the incident electric field from
external source and expresses the incident electric field in
model. Elimination ofHf between these two relations wi
provide the propagation equations forF, modified to ac-
count for the incident electric field.

A. First relation: continuity of H f

To establish the first relation, impose the continuity ofHf
~but not its normal derivative! at r5a. From this follows the
continuity of]Hf /]z, and in turn, by Eq.~1!, the continuity
of (e j]Er /]t1Jr). One views the membrane as a limitin
case in which a thicknessd shrinks to zero, withErd→
2F andemem/d→CM , whereF is the potential of the out-
side of the membrane relative to the inside andCM is a
capacitance per unit area of the membrane. This form is c
sistent with the following relation between ther component
of current in the membraneJmem and the components ofEr

andJr outside the membrane:
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]

]t
Er~a2,z,t !1Jr~a2,z,t !

5eout

]

]t
Er~a1,z,t !1Jr~a1,z,t !

52CM

]

]t
F~z,t !1Jmem~z,t !. ~4!

With Eq. ~1!, one obtains from this

]

]z
Hf~a,z,t !5CM

]

]t
F~z,t !2Jmem~z,t !. ~5!

@If the membrane were characterized by a voltag
independent conductivitysmem, one would haveJmem5
2smemF/d. Then for the static situation~in which ]/]t
50) in the case for whichs in5sout, it is easy to check tha
Eq. ~4! implies the condition~B12! in @1#, in the limit asd
→0; however, for nonstatic situations, the capacitive te
]F/]t is important.#

B. Second relation: boundary condition asr˜`

To establish the second relation betweenF andHf , one
notices that close to any point on the membrane, the elec
field is well approximated by the gradient of a potent
which satisfies the Laplace equation. As analyzed by S
@3#, this implies that a voltage drop across the membrane
a z derivative related to a jump in the tangential electric fie
componentEz from r5a1 to r5a2:

]

]z
F~z,t !5Ez~a2,z,t !2Ez~a1,z,t !. ~6!

Applying the operator

S s in1e in

]

]t D S sout1eout

]

]t D
to Eq. ~6! and using Eq.~2!, one obtains

S s in1e in

]

]t D S sout1eout

]

]t D ]

]z
F~z,t !

5S sout1eout

]

]t D 1

r

]

]r
rHf~a2,z,t !

2S s in1e in

]

]t D1

r

]

]r
rHf~a1,z,t !. ~7!

The next task is to determine ther derivative ofHf as r
→a6 in terms ofHf(a,z,t). This determination involves a
boundary condition onHf asr→`, which in turn depends
on the incident field, conceived as the electromagnetic fi
that would be present due to an external source if the ne
fiber were removed. It is convenient to specify the incide
field by Ez

inc(0,z,t), the z-component of the incident electri
field along the axis of the nerve fiber, and to work wi
Fourier transforms.

Denote the Fourier transform with respect tot andz by an
overbar, so an arbitrary functiong(z,t) has as its transform
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ḡ~b,v!5
def 1

2pE E dt dz ei (vt2bz)g~z,t !; ~8!

the inverse transform is

g~z,t !5
1

2pE E dv db e2 i (vt2bz)ḡ~b,v!. ~9!

The nonlinear aspect of the problem is confined to
boundary atr5a, so Maxwell’s equations are applicabl
from Eqs.~2! and ~3!, it follows that

Ēz
inc~r,b,v!5 f̄ ~b,v!I 0~koutr!, ~10!
.

e

wheref, supposed known, is defined by

f ~z,t !5
def

Ez
inc~0,z,t !, ~11!

the propagation constant in regionj is defined by

kj
25b22m0~e jv

21 ivs j !, ~12!

andI 0 is a modified Bessel function@6#. It is routine@3,7# to
show that~for coefficientsC(b,v) and D(b,v) yet to be
determined!:
ld as
H̄f~r,b,v!5H H̄f~a,b,v!I 1~kinr!/I 1~kina! if r<a,

C~b,v!I 1~koutr!1D~b,v!K1~koutr! otherwise,
~13!

from which it follows that

1

r

]

]r
rH̄f~r,b,v!5H kinH̄f~a,b,v!I 0~kina!/I 1~kina! as r→a2,

kout@C~b,v!I 0~kouta!2D~b,v!K0~kouta!# as r→a1.
~14!

The Fourier transform of Eq.~2! is used to specify a boundary condition of the total field approaching the incident fie
r→`:

1

r

]

]r
rH̄f~r,b,v!→~sout2 iveout!Ēz

inc~r,b,v!; ~15!

this and Eq.~14! result in

koutC~b,v!5~sout2 iveout! f̄ ~b,v!. ~16!

Continuity of Hf at r5a and Eq.~13! imply

H̄f~a,b,v!5C~b,v!I 1~kouta!1D~b,v!K1~kouta!. ~17!

Solving Eqs.~16! and ~17! for C andD and substituting these solutions into Eq.~14! produce

1

r

]

]r
rH̄f~r,b,v!5H kinH̄f~a,b,v!I 0~kina!/I 1~kina! as r→a2,

~sout2 iveout! f̄ ~b,v!/@koutaK1~kouta!#

2koutH̄f~a,b,v!K0~kouta!/K1~kouta! as r→a1.

~18!
-

The substitution of Eq.~18! into the Fourier transform of Eq
~7! yields

ibF̄~b,v!5S kinI 0~kina!

~s in2 ive in!I 1~kina!

1
koutK0~kouta!

~sout2 iveout!K1~kouta! D H̄f~a,b,v!

2
f̄ ~b,v!

koutaK1~kouta!
. ~19!
C. Combining the two relations

Eliminating H̄f between Eq.~19! and the Fourier trans
form of Eq. ~5!, one finds

~ ib!2F̄~b,v!5S kinI 0~kina!

~s in2 ive in!I 1~kina!

1
koutK0~kouta!

~sout2 iveout!K1~kouta! D
3@2 ivCMF̄~b,v!2 J̄mem~b,v!#
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2
ib f̄ ~b,v!

koutaK1~kouta!
, ~20!

which implies the following equation, more convenient f
inverting the transforms to the (z,t) domain:

Ḡ~b,v!~s in2 ive in!S 2b2F̄1
ibĒz

inc~0,b,v!

koutaK1~kouta!
D

52 ivCMF̄~b,v!2 J̄mem~b,v!, ~21!

whereG(z,t) is defined by its transform

Ḡ~b,v!5S kinI 0~kina!

I 1~kina!
1

~s in2 ive in!koutK0~kouta!

~sout2 iveout!K1~kouta! D 21

.

~22!

The functionG is sharply peaked relative to the time scale
change ofF with z and t. In the (b,v) domain, one has

Ḡ~b,v!5
a

2 S 11
~kina!2

8

1~kouta!2 ln~2/kouta!
~s in2 ive in!

2~sout2 iveout!
D 21

1O„~kouta!4 ln2~kouta!…, ~23!

so thatḠ is flat over the regionukoutau!1 in which F̄(b,v)
is significant. To arrive at the propagation equation
Hodgkin and Huxley~with or without an external field!, one
makes two approximations, the first of which replacesG by
a/2 times ad function. The denominator in Eq.~21! which
divides the external fieldf̄ is

koutaK1~kouta!512 1
2 ~kouta!2@ ln~2/kouta!1 1

2 2g#

1O@~kouta!4 ln~kouta!#, ~24!

where g50.5772••• is Euler’s constant@6#. The Fourier
transform of an ELF external field gradient] f /]z is negli-
gible outside the region defined byubu!1/a and uv2u
!ua2/m0e j u, so in this case the denominator~24! can be
replaced by 1; this and the replacement ofḠ by a/2 yield

a

2 S s in1e in

]

]t D S ]2

]z2
F~z,t !1

]

]z
Ez

inc~0,z,t !D
5CM

]

]t
F~z,t !2Jmem~z,t !. ~25!

In deriving the Hodgkin-Huxley propagation equation, a s
ond approximation is made: one neglectsve in compared
with s in , thereby simplifying Eq.~25! to

as in

2 S ]2

]z2
F~z,t !1

]

]z
Ez

inc~0,z,t !D
5CM

]

]t
F~z,t !2Jmem~z,t !. ~26!
f

f

-

D. Propagation equation modified for an external field

As their model forJmem, Hodgkin and Huxley take

Jmem~z,t !5JHH@F#, ~27!

where they call2JHH@F# the ‘‘ionic current density’’ and
define it by a system of equations that are ordinary differ
tial equations int, with coefficients that are functions of bot
t andz:

2JHH@F#5
def

gKn4~F2FK!1gNam
3h~F2FNa!

1gL~F2FL!, ~28!

where FK577 mV and FNa5250 mV, FL
554.401079 mV; the first two play the role of Nernst p
tentials, whileFL is chosen in a way discussed below. T
g’s are constants with units of conductance per unit ar
gK5360 S/m2, gNa51200 S/m2, andgL53 S/m2.

The functionsn5n(z,t), m5m(z,t), andh5h(z,t) are
all between 0 and 1 and correspond to the opening and s
ting of gates that regulate conductance. At any pointz along
the fibern, m, andh depend on the history of voltage at th
point, according to the ordinary differential equations

r 21
dn

dt
5an~12n!2bnn, ~29!

r 21
dm

dt
5am~12m!2bmm, ~30!

r 21
dh

dt
5ah~12h!2bhh, ~31!

wherer is a temperature-dependent rate constant defined

r ~T!53(T26.3)/10 kHz, ~32!

andT is the temperature in degrees centigrade. Hodgkin
Huxley state thea ’s andb ’s as functions of an offset voltag
v defined by

v5
def

F2FR . ~33!

For v in mV:

an~v !50.1
~0.1v11.0!

exp~0.1v11.0!21
, ~34!

bn~v !50.125 exp~v/80.0!, ~35!

am~v !5
~0.1v12.5!

exp~0.1v12.5!21
, ~36!

bm~v !54.0 exp~v/18.0!, ~37!

ah~v !50.07 exp~v/20.0!, ~38!

bh~v !51/@exp~0.1v13.0!11.0#. ~39!
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The square brackets inJHH@F# indicate that the membran
current density at (z,t) is a function of the history of mem
brane voltage atz for times earlier thant, i.e., F(z,t8) for
t8<t.

In order to study the dependence of propagation velo
on parameters, it is convenient to reexpress these equa
in dimensionless time and distance parameters:

t5
def

r ~T!t ~40!

and

z5
def

~2gK /as in!1/2z. ~41!

In these variables,r 21]/]t in Eqs.~29!–~31! is replaced by
]/]t while Eqs.~26!–~28! combine to produce

]2

]z2
F~z,t!2~rCM /gK!

]

]t
F~z,t!

5n4~F2FK!1
gNa

gK
m3h~F2FNa!

1
gL

gNa
~F2FL!2F~z,t!, ~42!

whereF is (as in/2gK)]Ez
inc(0,z,t)/]z expressed in the (z,t)

coordinates:

F~z,t!5
def

~as in/2gK!1/2
]

]z
Ez

inc
„0,~as in/2gK!1/2z,r 21t….

~43!

Hence the approximations used to derive the propaga
equations of Hodgkin and Huxley produce for the case of
external field the additional~driving! term 2F proportional
to 2]Ez

inc/]z in Eq. ~42!.

E. Static case and the resting potential

Consider the case in which]F/]t50 and]F/]t50. In
this case, one has a membrane voltageF(z) with no depen-
dence ont, and n(z,t) has a static valuens(z), found by
settingd/dt50 in Eq. ~29!:

ns~z!5
def

$11bn„F~z!…/an„F~z!…%21, ~44!

with similar equations forms andhs. Thus the order of the
system of differential equations drops from 5 to 2, and o
has in place of Eq.~42! the second-order system:

]2

]z2
F~z!5ns„F~z!…4~F2FK!

1
gNa

gK
ms„F~z!…3hs„F~z!…~F2FNa!

1
gL

gNa
~F2FL!2F~z!. ~45!
y
ns

n
n

e

When the additional constraint is imposed thatF and F
be invariant withz, one has the quiescent case, which is j
the algebraic~rather than differential! equation for a mem-
brane voltageF0(F) independent ofz as well as indepen-
dent oft:

05ns„F0~F !…4@F0~F !2FK#

1
gNa

gK
ms„F0~F !…3hs„F0~F !…@F0~F !2FNa#

1
gL

gNa
@F0~F !2FL#2F. ~46!

The Hodgkin and Huxley model, partially specified, co
tains a parameterFL that must be assigned a numerical val
to fully specify the model. Hodgkin and Huxley assum
implicitly that the value assigned toFL is independent of
any external field, and hence independent of the exte
field gradientF, and that assumption is made here. Thus
FL is defined for one special case ofF, it is defined for all
cases. For the caseF50, the value ofF that makes the ionic
current 0, satisfying Eq.~46!, depends onFL . Conversely, if
one knows the voltageFR ~called the resting potential! at
which the ionic current is 0 for the caseF50, one can assign
to FL the value for which the solution to Eq.~46! is the
resting potential. Hodgkin and Huxley chose the value
FL such that

F0~0!5FR565 mV. ~47!

III. TRANSLATIONAL INVARIANCE FOR CONSTANT
F „z,t…/z

In case]Ez
inc(z,t)/]z is constant,F5F0 is constant and

there exists an everywhere-finite solution to Eq.~42! of the
form F(t2z/g) for an as yet undetermined normalized v
locity parameterg. This corresponds in the variables (z,t) to
a propagating action potential that is a function of (t2z/u)
where the physical velocity is

u5~as in/2gK!1/2r ~T!g. ~48!

One obtains in this way the following fifth-order system
ordinary differential equations, which contains a given co
stant gradientF0 and the as yet undetermined velocityg as
parameters:

d2

dt2
F~t!5g2F rCM

gK

d

dt
F~t!1n4@F~t!2FK#

1
gNa

gK
m3h@F~t!2FNa#

1
gL

gK
@F~t!2FL#2F0G , ~49!

accompanied by the normalized form of Eqs.~29!–~31!:

dn

dt
5an~12n!2bnn, ~50!
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dm

dt
5am~12m!2bmm, ~51!

dh

dt
5ah~12h!2bhh. ~52!

These four equations~and the definitions of thea ’s and
b ’s! define a propagating action potential. The main focus
this report is on determiningg as a function ofF0 ~and of
rCM /gK). The procedure is the same as that used
Hodgkin and Huxley for the caseF050. As is well known
for the caseF050, solutions that are everywhere finite ex
only for special values ofg. For a single-spike solution,g is
unique and depends onF0, as well as on the paramete
(rCM /gK).

To find g(F0 ,rCM /gK), one proceeds by trial and erro
guided by the fact that, just as for the case ofF050, a
guessed value that exceedsg leads—on integrating the sys
tem of equations—to a trajectory that dives toward nega
infinity, while a guessed value that is too low leads to
trajectory that rises without bound.

A. Defining g

For F constant, the system of ordinary differential equ
tions is autonomous, and so is characterized by a vector
defined on a five-dimensional phase space with coordin
(F,dF/dt,n,m,h) @8#. This field and hence the integra
curves corresponding to solutions of the system are par
etrized byF0 , rCM /gK , and the trial value forg. For any
values ofF0 , rCM /gK , and the trial value forg, there is a
trajectory that starts from the quiescent point having coo
nates „F0 ,0,n0(F0),m0(F0),h0(F0)…, where F0 is short
for F0(F0). This is a singular point, a saddle point. Only f
the special valueg does this trajectory return to the quiesce
point; for all other values it shoots off to plus or minu
infinity in the F coordinate. Searching over trial values ofg
back and forth between the regions that generate positive
negative overshoot determines the special value.

B. Initial conditions

Trial values ofg are found to be too small or too big b
integrating the system of equations. For any trial value,
tial conditions for this integration follow from linearizing th
system of ordinary differential equations around valuesF, n,
m, and h that define the singular point. For this linearize
system, one finds a solution that begins with exponen
growth by numerically finding the real roots of the chara
teristic polynomial.~The exponent is a function ofF0 and a
trial value of the velocity parameterg, for which one can
solve numerically.! This initial condition, more precise tha
the initial condition used by Hodgkin and Huxley, is mo
vated by the desire for as much precision as possible in
termining howg(F0 ,rCM /gK) depends onF0.

IV. NUMERICAL ANALYSIS

The numerical solution ofg„F0 ,r (T)CM /gK… was per-
formed as follows, using a fourth-order Runge-Kutta rout
@9# to forward integrate the equations in arithmetic carr
f

y

e
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al
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e-

e

out to 15 decimal places. The parameterr (T)CM /gK was set
first at the value corresponding to the squid axon at 6 °C,
then for several other values. For each such value,F0 was set
at a succession of values. For each value ofF0, an initial
guess was made forg, and the system of ordinary differentia
equations was integrated, starting from values on the line
ized trajectory close to the singular point, at whichF
5F0(F0)20.0001 mV. Integration was continued until th
trajectory exceeded either a positive bound of 135 mV o
negative bound of2135 mV. Two values ofg were deter-
mined such that one resulted in a positive overshoot,
other negative; then a binary search produced a successi
values ofg, so as to close in on the valueg„F0 ,r (T)CM /gK…

which partitions the positive from the negative overshootin
Fifty iterations determined this value to better than ten s
nificant digits.

For a temperature of 6.3 °C andCM51 mF/cm2

(50.01 F/m2), this procedure yields the results shown
Figs. 1 and 2 for g„F0 ,r (T)CM /gK… and
g21]g„F0 ,r (T)CM /gK…/]F0, respectively, the latter in
units of mV21. For likely fields from external sources,uF0u
,0.01 mV, and in this regime Fig. 1 shows th
g„F0 ,r (T)CM /gK… is well approximated by only the firs

FIG. 1. Plot ofg versusF0 for rCM /gK51/36.

FIG. 2. Plot ofg21]g/]F0 versusF0 for rCM /gK51/36.
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two terms of a Taylor expansion:

g~F0 ,rCM /gK!'g~0,rCM /gK!

1F0

]

]F0
g~F0 ,rCM /gK!U

F050

.

~53!

It is convenient to abbreviate the terms on the right-hand s
of the approximation~53! by writing g(0) for g(0,rCM /gK)
and ġ for (]/]F0)g(F0 ,rCM /gK)uF050. Numerical compu-

tations ofg(0) andg(0)21ġ in units of mV21 as functions
of the temperature-dependent rater (T) are shown in Table I.

V. MODULATION OF PULSE TRAINS

A. Slow variation in F

An estimate of the effect of a slowly oscillating incide
electric field on the timing of successive pulses propaga
along a nerve can now be made. The first step is to de
‘‘slowly.’’

An action potential propagating along a nerve defin
time and distance scales in the normalized variablest andz.
Let tpassbe the normalized time duration for the passage
an action potential past a given position, and letzocc be the
normalized distance along the axon occupied by an ac
potential at a given time. Whiletpass is roughly constant
from 6 to 20 °C, g varies with the parameterrCM /gK as
shown in Table I; for the axon studied by Hodgkin and Hu
ley tpass'5, and the correspondingtpass is about 5 ms at
6.3 °C and 1.2 ms at 18.5 °C. The normalized distance al
the axon occupied by an action potential at a given time

zocc5gtpass, ~54!

which implies a physical distancezocc'6 cm at 6 °C and
2.3 cm at 18.5 °C.

The purpose of this section is to study an axon subjec
to an incident electric field gradientF along its axis that
oscillates slowly with normalized positionz and timet ~in
contrast to the assumption of Sec. III!. By slowly is meant

TABLE I. Dependence ofg and ġ on r (T) at F50.

r (T)CM /gK g(0) g(0)21ġ (mV21)

1.00/3650.027777777 12.743143653 0.129445819
1.50/3650.041666666 9.760029779 0.107600697
2.00/3650.055555555 8.029646202 0.102590168
2.50/3650.069444444 6.877171563 0.104611181
3.00/3650.083333333 6.044387337 0.110250898
3.50/3650.097222222 5.409165600 0.118032410
4.00/3650.111111111 4.905562618 0.127230295
4.50/3650.125000000 4.494557981 0.137460700
5.00/3650.138888888 4.151453199 0.148513560
5.50/3650.152777777 3.859783923 0.160275428
6.00/3650.166666666 3.608113894 0.172690892
6.50/3650.180555555 3.388228726 0.185742098
e

d
e

s

f

n

-

g

d

that F changes by no more than a few percent of its pe
value ast changes bytpassand asz changes byzocc.

B. Pulse trains subject to slowly varying gradients

The Hodgkin-Huxley equations have solutions not on
for the isolated voltage spike studied above, but also
trains of such spikes, with nearly the same velocity as fo
single spike. Consider a sequence of voltage spikes, eac
which propagates along an axon along thez axis of a coor-
dinate system, and suppose the axon is subjected to an
dent electric field parallel to the axon having a gradientF
defined in Eq.~43!. If F varies slowly witht and z, then
each spike can be expected to vary in its speed of prop
tion as would a single spike propagating with a constantF0
equal to the value ofF at the time and place of the spike
That is, the~normalized! time t(z,tA) at which a spike start-
ing at z50 at timetA reaches positionz is determined by
assuming that the~normalized! velocity of a spike along the
way at (z8,t8) is g„F(z8,t8)…. From this assumption of ‘‘lo-
cally flat’’ behavior follows a differential equation for th
normalized timet(z,tA) at which a spike passingz50 at
time tA reachesz:

d

dz
t~z,tA!51/~ local velocity!51/g@F„z,t~z,tA!…#.

~55!

To solve this equation approximately, it is convenient to fi
transform it into an integral equation, assuming that at
5tA the spike is atz50:

t~z,tA!5tA1E
0

z

dz8$g@F„z8,t~z8,tA!…#%21. ~56!

Under the very reasonable assumption that a first-or
Taylor expansion expressesg(F0) viewed as a function of
F0 ~omitting to write explicitly the dependence ofg on the
parameterrCM /gK), one has

g@F„z,t~z,tA!…#5g~0!1ġF„z,t~z,tA!…, ~57!

whereg(0) andġ are coefficients independent ofz and t:
g(0) is short forg(0,rCM /gK) and

ġ5
def ]

]F0
g~F0 ,rCM /gK!U

F050
. ~58!

Substituting Eq.~57! into Eq. ~56! yields

t~z,tA!5tA1E
0

z

dz8$g~0!1ġ@F„z8,t~z8,tA!…#%21

'tA1E
0

z

dz8g~0!21

3H 12
ġ

g~0!
@F„z8,t~z8,tA!…#J

5tA1
z

g~0!
2

ġ

g~0!
E

0

z

dz8F„z8,t~z8,tA!…, ~59!
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which is suitable for solution by successive approximatio
Let t (0)(z,tA)5tA1z/g(0) and define

t (n)~z,tA!5tA1
z

g~0!
2

ġ

g~0!
E

0

z

dz8F„z8,t (n21)~z8,tA!….

~60!

When the sequence converges, limn→`t (n)(z,tA)5t(z,tA).
Under the assumed conditions of ‘‘smallF,’’ the first ap-
proximation is already a good approximation:

t~z,tA!'tA1
z

g~0!
2

ġ

g~0!
E

0

z

dz8F„z8,tA1z8/g~0!….

~61!

C. Example

As a straightforward example, letF(z,t)5 f 0 cosvt, in-
dependent ofz. Then the integral in the approximation~61!
is elementary and one obtains

t~z,tA!5tA

ġ f 0

vg~0!
$sinv@tA1z/g~0!#2sinvtA%

5tA2
2ġ f 0

vg~0!
sin@z/2g~0!#cos@tA1z/2g~0!#.

~62!

Suppose a sequence of spikes is propagated starting atA
5np for n50, 1, 2, . . . . Thecorresponding arrival times
at z are t̂n ; then by Eq.~62! one readily computes

t̂n2 t̂n215p1
4ġ f 0

vg~0!
sin

vp

2
sin

vz

2g~0!

3sinvF S n2
1

2D p1
z

2g~0!G . ~63!

The argument in the sine in the last factor advances byvp
for each pulse, contributing to pulse-to-pulse variation
transmission delay. The time duration between the arrival
spike n21 and spiken at z differs from the time duration
between them at transmission by the fraction
.

of

Dp

p
5

4ġ f 0

g~0!vp
sin

vp

2
sin

vz

2g~0!

3sinvF S n2
1

2D p1
z

2g~0!G . ~64!

This modulation of the interval between spikes is bounded
magnitude by

UDp

p U< 2ġ f 0

g~0!
, ~65!

which in physical units corresponds to

UDpphys

pphys
U< ġas in

g~0!gK

]

]z
Ez

inc~0,z,t !. ~66!

Hence as the nerve diameter decreases, so does the mo
tion of pulse intervals caused by an incident electric fie
gradient.

An explicit example for the squid giant axon~of radius
238 mm) is the following. If v'p/p and z'pg(0), then
spikes transmitted at even intervalsp arrive atz with inter-
vals that alternate betweenp@124ġ f 0 /pg(0)# and p@1
14ġ f 0 /pg(0)#. In other words, there is pulse-interva
modulation, with the intervals alternately stretched a
shrunk by a fraction 4ġ f 0 /pg(0). Shifting to physical co-
ordinates, at a temperature of 18.5 °C, one finds~interpolat-
ing in Table I! that rCM /gK53.82/36, g(0)'5, and
ġ/g(0)50.124 mV21. This implies that a gradient o
1 mV/cm2 (10 V/m2) in the longitudinal component of an
incident electric field at 60 Hz modulates pulse interv
transmitted every 8.3 ms along a squid giant axon of len
16 cm, producing a fractional modulation of the pulse int
vals of 1.47%. It would be interesting to see if measureme
confirm this.
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